Hamilton circles in infinite planar graphs
نویسندگان
چکیده
A circle in a graph G is a homeomorphic image of the unit circle in the Freudenthal compactification of G, a topological space formed from G and the ends of G. Bruhn conjectured that every locally finite 4-connected planar graph G admits a Hamilton circle, a circle containing all points in the Freudenthal compactification of G that are vertices and ends of G. We prove this conjecture for graphs with no dividing cycles. In a plane graph, a cycle C is said to be dividing if each closed region of the plane bounded by C contains infinitely many vertices.
منابع مشابه
Hamilton Cycles in Planar Locally Finite Graphs
A classical theorem by Tutte assures the existence of a Hamilton cycle in every finite 4-connected planar graph. Extensions of this result to infinite graphs require a suitable concept of an infinite cycle. Such a concept was provided by Diestel and Kühn, who defined circles to be homeomorphic images of the unit circle in the Freudenthal compactification of the (locally finite) graph. With this...
متن کاملCircle-Representations of Simple 4-Regular Planar Graphs
Lovász conjectured that every connected 4-regular planar graph G admits a realization as a system of circles, i.e., it can be drawn on the plane utilizing a set of circles, such that the vertices of G correspond to the intersection and touching points of the circles and the edges of G are the arc segments among pairs of intersection and touching points of the circles. In this paper, (a) we affi...
متن کاملOn a conjecture of Lovász on circle-representations of simple 4-regular planar graphs
Lovász conjectured that every connected 4-regular planar graph G admits a realization as a system of circles, i.e., it can be drawn on the plane utilizing a set of circles, such that the vertices of G correspond to the intersection and touching points of the circles and the edges of G are the arc segments among pairs of intersection and touching points of the circles. In this paper, we settle t...
متن کاملProjective-planar signed graphs and tangled signed graphs
A projective-planar signed graph has no two vertex-disjoint negative circles. We prove that every signed graph with no two vertex-disjoint negative circles and no balancing vertex is obtained by taking a projective-planar signed graph or a copy of −K5 and then taking 1, 2, and 3-sums with balanced signed graphs.
متن کامل2 00 2 Open Problems from CCCG 2002
Is every zonohedron 3-colorable when viewed as a planar map? This question arose out of work described in [RSW01]. An equivalent question, under a different guise, is posed in [FHNS00]: Is the arrangement graph of great circles on the sphere 3colorable? Assume no three circles meet at a point, so that this graph is 4-regular. Circle graphs in the plane can require four colors [Koe90], so the ke...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. B
دوره 99 شماره
صفحات -
تاریخ انتشار 2009